
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

1 Towards Integrated Modeling of the Long-term Impacts of Oil  Spills  

Abstract  

Although  great  progress has been  made  to  advance  the  scientific understanding  of  oil  

spills, tools for integrated  assessment modeling  of  the  long-term  impacts on  ecosystems,  

socioeconomics  and  human  health  are  lacking. The  objective  of this  study  was to  develop  

a  conceptual framework that could be  used  to  answer stakeholder  questions about oil  

spill impacts  and  to  identify  knowledge  gaps and  future  integration  priorities. The  

framework  was  initially  separated  into  four knowledge  domains  (ocean  environment,  

biological  ecosystems,  socioeconomics,  and  human  health) whose  interactions were 

explored  by  gathering  stakeholder questions through  public engagement, assimilating  

expert input about existing  models,  and  consolidating  information  through  a  system  

dynamics approach. This synthesis  resulted  in a  causal loop  diagram  from  which the  

interconnectivity  of  the  system  could  be  visualized. Results of this analysis indicate  that  

the  system  naturally  separates into  two  tiers, ocean  environment and  biological 

ecosystems versus socioeconomics  and  human  health. As  a  result,  ocean  environment  

and  ecosystem  models could  be  used  to  provide  input  to  explore  human  health  and  

socioeconomic variables  in  hypothetical scenarios. At decadal-plus  time  scales, the  

analysis emphasized  that human  domains  influence  the  natural domains through  changes  

in oil-spill related  laws and  regulations. Although  data  gaps were identified  in  all  four  

model domains,  the  socioeconomics  and  human  health  domains  are  the  least  

established. Considerable future work is needed  to  address research gaps and  to  create  

fully  coupled  quantitative  integrative  assessment models that can  be  used  in  strategic 

decision-making  that will optimize recoveries from  future large oil spills.  
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Abstract   

Although  great  progress has been  made  to  advance  the  scientific understanding  of  oil  

spills, tools for integrated  assessment modeling  of  the  long-term  impacts on  ecosystems,  

socioeconomics  and  human  health  are  lacking. The  objective  of this  study  was to  develop  

a  conceptual framework that could be  used  to  answer stakeholder  questions about oil  

spill impacts  and  to  identify  knowledge  gaps and  future  integration  priorities. The  

framework  was  initially  separated  into  four knowledge  domains  (ocean  environment,  

biological  ecosystems,  socioeconomics,  and  human  health) whose  interactions were 

explored  by  gathering  stakeholder questions through  public engagement, assimilating  

expert input about existing  models,  and  consolidating  information  through  a  system  

dynamics approach. This synthesis  resulted  in a  causal loop  diagram  from  which the  

interconnectivity  of  the  system  could  be  visualized. Results of this analysis indicate  that  

the  system  naturally  separates into  two  tiers, ocean  environment and  biological 

ecosystems versus socioeconomics  and  human  health. As  a  result,  ocean  environment  

and  ecosystem  models could  be  used  to  provide  input  to  explore  human  health  and  

socioeconomic variables  in  hypothetical scenarios. At decadal-plus  time  scales, the  

analysis emphasized  that human  domains  influence  the  natural domains through  changes  

in oil-spill related  laws and  regulations. Although  data  gaps were identified  in  all  four  

model domains,  the  socioeconomics  and  human  health  domains  are  the  least  

established. Considerable future work is needed  to  address research gaps and  to  create  
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fully  coupled  quantitative  integrative  assessment models that can  be  used  in  strategic 

decision-making  that will optimize recoveries from  future large oil spills.  

 

Keywords:   Oil Spills, Impact and  Damage  Assessment,  Integrated  Assessment  

Modeling, Systems Dynamics, Causal Loop  Diagrams  
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34 1.  Introduction  

 

On April 20,  2010, the  Deepwater Horizon (DWH) oil drilling platform  exploded, kil ling  11  

people  and  injured  17  others, and  causing  a  deep-sea  blowout.  This led  to  one  of  the  

largest oil  spills in history, releasing  natural gas plus an  estimated  5  million  barrels of  oil  

into  the  Gulf  of  Mexico  (GoM)  before  the  well  was capped  87  days later  (McNutt et al.  

2012). As part of  the  response, 2  million  gallons of  dispersant were applied  at the  deep  

sea and  at the  sea surface (USCGNRT 2 011).   

 

The  DWH  oil  spill was notable for its immense  impact,  and  for being  the  deepest (~1,500  

m) major oil  spill  to  date. Despite  advances  in  drilling  safety, the  likelihood  of  a  range  of 

spills of  various sizes is  still  a  danger for which preparation, response,  and  recovery  plans  

are needed, given the lessons learned  from  the DWH  accident. To this end, a  number of  

tools are available.  Models for operational oil  spill forecasting, including  ocean, wave  and  

weather forecasting  for predicting  oil  movement  and  concentration  (Barker et al. 2020)  

tend  to  employ  short  time  horizons, making  predictions  hours to  weeks into  the  future. 

They  also  are  typically  used  to  guide  emergency  response  activities and  immediate  

cleanup  efforts (e.g.,  by  answering  questions such  as where to  deploy  equipment for 

shoreline  removal of oil). These  operational models can  be  quickly  configured  to  

investigate  tactical questions as new  questions arise. In  contrast,  broader models that  

estimate th e effects of oil  spills on  society  (i.e., integrating ocean environment, biological 

ecosystems,  socioeconomics  and  human  health  knowledge  domains) can  be  employed  

for damage  assessment and  strategic planning. These  models are  intended  to  operate  
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57 over longer time  horizons, from  months or  years to  decades. They  tend  to  be  more  

interdisciplinary  in nature,  because  they  require  integration  across broad  knowledge  

domains. Although  environmental  assessments depend  strongly  on  quantitative  models  

that  can  incorporate  knowledge  from  a  wide  range  of disciplines, fully  coupled  

assessment models that consider  quantifiable aspects of  human  dimension  are scarce,  

and  while  a  few  quantitative  interdisciplinary  models have  been  developed  (Paris et al.  

2013, Ainsworth  et al. 2018, French-McCay  et al. 2019, Dukhovskoy  et al. 2020,  

Berenshtein  et al 2020a), they  have  not  been  connected  under  a  single framework. This 

paper  addresses  efforts towards this end  and  lays  out  a framework of how  the  long-term  

analysis of  oil  impacts  can  be  integrated  and  implemented  for  future strategic  planning  

for optimizing long-term recovery from  major oil spills.  

 

System  Dynamics (Forrester 1961, 1989, 2010),  as an organizing  principle, was used  to  

drive  the  synthesis effort. In  simple terms Forrester  (2010)  described  System  Dynamics 

as,  “Interpreting  real life  systems  into  computer simulation  models that allow  one  to  see  

how  the  structure  and  decision-making  policies in a  system  create  its behavior.”  System  

Dynamics  is a  methodology  for addressing  complex  interdependent and  non-linear  

systems that are governed  by  sequences of  interacting  causes and  effects, also called  

feedback loops. Ideally, primary  determinants of  behavior should  be  endogenous,  i.e.,  

there should be  few  external driving  forces.  This principle  is well  suited  for our purpose  

(Pérez-Pérez  et al. 2020), given  that we  wish to  consider how  the  entire GoM  (nature and  

humans) is impacted  by  an  oil  spill. The  method  has proven  well  suited  for policy  analysis  
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79 in general because  feedbacks tend  to  exist  at multiple  points in the  political system  

(Pagoni and Patroklos 2019, Zhou  et al. 2020).  

 

The  conceptualization  phase  of building  a  System  Dynamics model often  includes  the  

development of  Causal Loop Diagrams  (CLDs),  which aid in visualizing interconnections  

among  the  systems to  be  linked  (Brennan  et al. 2019). CLDs are shown  as flow  diagrams  

in  which the nodes represent variables,  and links, including directional arrows,  represent  

causal influences. Specific information  about nonlinear functional forms  and  state  

variables is neglected  in CLDs for simplicity.  The  CLDs  thus  provide  a  high-level 

qualitative  overview  of  the  system, making  them  ideal for synthesizing  complex  and  

interconnected  systems in a  way  that is easily understandable.  Because  CLDs are simple  

and  visually  intuitive, they  can  be  co-developed  with  experts unfamiliar with  the  method 

of System Dynamics.  

 

This  paper  focuses  on the  development  of the  CLD  for the  GoM sy stem  in  the  context of 

oil  spill impacts.   Additionally, the  intention  is for the  CLD to  be  applicable to  oil  spills in  

general, while using DWH  as an  example to  guide its development.   

 

To  describe  the  development of the  CLD and  its interpretation  this  paper is organized  in 

the  following  sections, following  the  introduction  Section  (1):  Section  (2)  we  present the  

societal questions and  stakeholder needs that helped  guide  this synthesis; (3)  we  

developed  the  CLDs; (4)  we  analyze  the  CLD  in light of  the  societal questions posed  in  

Section  2; (5)  we  map  existing  models onto  the  CLD, to  identify  gaps in understanding  
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102 and  model development (based  on   the  stakeholder needs identified  in Section  2); (6)  we  

describe  a roadmap  for future applications, and  (7)  we summarize and conclude.  

 

2.  Societal Questions  and Stakeholder Needs  

 

Many  questions have  been  raised  by  stakeholders and  concerned  citizens over the  years  

about the  long-term  impacts of  the  DWH  oil  spill. A  number  of  these  questions were 

consolidated  by  the  GoM  Sea  Grant  Oil Spill  Science  Outreach  Team  (Hale  et al. 2019)  

who  engaged  with  stakeholders to  learn about  their  oil  spill science-related  questions and  

concerns.  The  team  engaged  with  target  audiences  (Table  1) and  the  general public  

during  the  first year  through  one-on-one  discourse,  small  group  meetings, and  large  group  

input  sessions. In  2014  and  2016,  the  team  conducted  two  Social Network Analyses  to  

understand  how  credible,  relevant,  and  timely  oil  spill science  information  flowed  through  

a  network of  people  from  these  specific  target groups  in  the  GoM.  Survey  participants  

used  the  opportunity  to  share  topics of interest  (Sempier et al. 2019a, 2019b, 2019c, See  

https://gulfseagrant.org/oilspilloutreach).  The  team  also compiled  audience  feedback  

data  from  evaluations  completed  before  and  after  30  oil  spill science  seminars  and  

workshops. All  data,  surveys, and  evaluations represent target audience  input between  

2014  and  2018. From  these  efforts, some  of the  key  questions consolidated  by  Sea  Grant  

were very broad, and included:  

●  “Is the  Gulf seafood safe to eat?”  

●  “What are the impacts to wildlife?”  

●  “Where did the  oil go and where is it now?”  
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125 ●  “Do dispersants make it unsafe  to swim in the  water?”  

 

Additional questions  (Table 2)  are more specific variations of  the  bulleted  questions above  

that were categorized  by  experts  within each  of  the  knowledge  domains. Some  of the  

additional questions,  for  the  socioeconomics  domain, expand  upon  the  bulleted  questions  

to  include  questions  about  the  impacts  of the  spill on  economics, infrastructure, and  

community resiliency.  

 

To obtain additional feedback from oil spill decision makers representing industry and  

the  oil spill response, restoration, and environmental monitoring communities, a  

stakeholder panel was coordinated in 2020  by Sea  Grant  (see supplementary materials  

for details). Needs identified  by  this panel included:  

●  A  cross-disciplinary  model that can  quickly  be repurposed  for new  geographic 

areas  and  be  applicable on a wide range  of scales both  nationally and  

internationally.  

●  Models that can  track the oil  transport and  fate  from the time  a spill occurs all the  

way  to and  through the damage assessment p rocess  and system recovery (N OS  

2020).  

●  Models that look  at cleanup strategies and their  potential impacts  

●  Models that could accommodate  additional considerations such  as air  quality  

components,  different oil types, and  freshwater-salinity fronts,  

●  Provide for improved  baseline  data  so  that impacts of oil spills  can be better 

assessed.  
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148 ●  Maintenance of  data  repositories and its accessibility  for  future modeling needs.   

Stakeholder questions  consolidated  by  Sea  Grant during  its early  outreach  efforts  were  

generally  focused  on  practical  issues, including  topics  related  to  impacts  on  human  and  

ecological health  and  a  desire  to  understand  the  ultimate  disposition  of  the  oil. Similarly,  

but in a  broader sense, stakeholders from  the  2020  Sea  Grant outreach  effort emphasized  

the  need  for  practical  models  that can  be  quickly  repurposed  to  answer questions  

associated with specific scenarios once they occur. The  need  for baseline data and data  

repositories to  be  used  for  model  development was also  emphasized. In  the  end  the  

stakeholders underscored  the  need  to  understand  the  extent of  damages caused  by  the  

spill, including  impacts  of  oil  spills on  seafood  resources,  impacts on  ecosystems, the  

ultimate  disposition  of the  oil, and  also the  safety  of  recreational resources.  With  this  

concept in mind, the  CLD  was developed  to  address assessment of  damages to  the  

environment,  ecosystems,  and  human  health, in  addition  to  their  socioeconomic  

consequences.  

 

3.  Development of the  Causal Loop Diagram  (CLD)  

 

3.1.  Creating the CLD  

 

Many  of  the  stakeholder questions focused  on  the  impacts of the  spill and  needs  for 

interventions  to  reduce  or prevent  impacts. Interventions mentioned  included  dispersant  

use, clean up to protect wildlife and  natural resources,  freshwater diversions to influence  

the  movement of  the  oil, and  fishery  closures to  control seafood  safety. Four knowledge  
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171 domains  (Figure 1)  were recognized  as  a  starting  point  to  identify  the  fields  of science  

needed  to  address both  spill impacts and  effects of  interventions. These  knowledge  

domains include the  following:   

 

●  Ocean  Environment: oceanic and  atmospheric transport and  biogeochemical and 

thermodynamic transport and  fate  processes.  

●  Biological Ecosystems: interconnectivity  of  organisms geographically  and  within  

and  between  trophic levels.  

●  Socioeconomics: evaluating market impacts across different  economic sectors as 

well as non-market societal impacts.   

●  Human  Health: acute  and  chronic physical and  mental health  impacts, including  

physiological and  psychological consequences of protracted  and  cumulative  

stress.  

 

These  four  domains served  as the  starting  point  for initializing  the  CLD. They roughly 

separate  the  subject  of  oil  spill impact modeling  into  a  distinct set of related  and 

overlapping  disciplines. For example, ocean  environment modeling  requires  expertise  

from  oceanography, climate  science,  and  contaminant transport, plus contributions from  

the  physical, geological, chemical, and  biological sciences. Biological ecosystems  involve  

a  core expertise  from  the  biological sciences including  the  sub-disciplines of  ecology, 

microbiology, marine  sciences, zoology, botany,  fisheries, and  veterinary  sciences,  with  

cross-over to  the  physical, geological,  and  chemical sciences. Socioeconomics  include  

the  sub-disciplines of  economics, anthropology, sociology,  psychology,  and 
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194 communication  studies. Human  health  includes the  sub-disciplines of  environmental  

health  science, public health, medicine, physiology, applications of  genomics and  other  

“omic”  sciences,  biostatistics/bioinformatics. All  domains  require  the  application  of 

rigorous mathematical and  statistical methods  and  computer  science. The  complexity  of 

the  impacts of  an  oil  spill is thus  demonstrated  by  the  knowledge  needs  from  many  

different disciplines.  

 

While recognizing  the  interconnectedness among  disciplines, information  was 

consolidated about the latest  models by  reviewing the literature and  gathering input from  

experts representing  each  of the  four domains of knowledge. Pre-existing review articles 

that discussed  recent advances in oil-spill research were focused on ocean environment  

(Spaulding  2017), biological ecosystems (Ainsworth  et al. 202X, Beyer et al. 2016)  and 

human  health  (Laffon  et al. 2016, Eklund  et al.  2019,  Sandifer et al. 2020b). Among  these  

Spaulding  (2017) and  Ainsworth  et al. (202X) provided  in-depth  reviews of  available 

models describing  advances in ocean  environment models, and  how  ocean  environment  

models have  been  interfaced  with  biological ecosystem  models.  Ainsworth  et al. (202X) 

emphasizes the  lack  of quantitative  models available in  the  human  health  and  

socioeconomics domains.   

 

Given that modeling in  human health and socioeconomics domains are characterized by  

larger gaps and  fewer linkages within existing  quantitative  models,  below  we  focus  on  

representative  modeling  capacities  within these  two  domains  which expand  upon  the  

descriptions  from  the  above-mentioned  literature reviews. An  extensive  review  of 
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217 modeling  capabilities  in  the  ocean  environment and  biological  ecosystem  domains  is 

described in Ainsworth et al. 202X.  

 

3.2.  Current models  in human health and socioeconomics  

 

Although  considerable  evidence  has been  collected  to  link human  health  impacts (both  

physical and  mental)  to  oil  spills (Aguilera et  al. 2010, Rusiecki et al. 2018, Kwok et al.  

2017a,b, Afshar-Mohajer et al. 2019, Wickliffe  et al. 2018, Wilson  et al. 2015, Goldstein  

et al. 2011, Osofsky et al. 2015,  Lowe et al. 2019,  Tasch and  Larcher 2012, Carroll et al.  

2002, Pan  et al. 2019, Drakeford et al. 2020, Sandifer et al. 2020b, McKendree  et al.  

2013, Morgan  et al. 2016, Wilson  et al. 2015,  Ylitalo et  al. 2012, Farrington  2020), 

quantification  of the  links has  been  limited. Exceptions include  a  few  physical health  

models based  upon  risk assessment approaches  or Bayesian  statistics.  For example,  the  

Beach  Exposure  And  Child HEalth  Study  (BEACHES)  evaluated  risks  to  children  from  oil-

contaminated  beaches  where the  hazard was identified  as the  chemical constituents  of  

oil  (Ferguson et al. 2019, 2020a, Tomenchok et al. 2020). Once the  concentrations were  

established  through  oceanographic models or empirical evidence  (Montas et al.  2020,  

Xia et al. 2020), then  the  beach  play  activities of  the  children  were simulated  as scenarios  

for possible  exposure (Ferguson  et al. 2019,  2020b) and  used  to  compute  health  risk  

(Black et al. 2016). In  the  context of  seafood, risk assessments evaluated  levels of  the  

more  toxic component  of oil, polycyclic aromatic hydrocarbons (PAHs),  but  recognized  

that  toxicological data  is missing  for alkylated  PAH forms  limiting  the  strength  of  risk  

assessment  approaches due  to  lack  of  toxicological data  (Farrington  2020, Wickliffe  et  al.  
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240 2014,2018).   Groth  et al. (2017) utilized  a  Bayesian  hierarchical  linear model  to  estimate  

exposures to  oil  spill workers to  specific volatile  oil  components based  upon  measured  

levels of  total hydrocarbons.  They  conclude  that correlations between  total hydrocarbon  

levels and volatile chemical components may be  useful for estimating  worker exposure.    

 

In  the  context of mental health,  conceptual  and  semi-quantitative  models have  been  

established  to  evaluate  cause  (direct and  secondary  disaster effects) and  effect  

(resilience  and  recovery  within a  community  as  measured  by  economic  and  housing   

stability, physical and  mental  well-being, and  social role  adaptation)  (McEwen  2000,  

Palinkas 2012, Abramson  et al. 2010,2015, Hansel et al. 2015).  For example,  Guo et al.  

(2018) have  utilized  structural equation  modeling  to  evaluate  hypotheses between  place  

attachment and community resiliency.  Indices have been developed to relate community  

well-being  and  resilience  to  environmental, economic, and  social factors (Smith  et al.  

2013, Summers et al. 2016, 2018).  A  critical area  of study  in the  context of  mental health  

impacts  is the  potential cumulative  nature of  stress (Osofsky  et al. 2016). Within the  

literature,  the  term  allostatic  load  has been  used  to  define  the  cumulative  impacts  of 

repeated  and  multiple mental health  stressors in a  person’s  life  that results in adverse  

mental and  physical health  outcomes (McEwen  and  Stellar 1993, McEwen   2000, 

Seeman  et al. 2001, Galen  Buckwalter et al. 2016, Rodriguez  et al. 2019, Forrester et al.  

2019, Harville et al. 2018). Models that integrate  mental health  consequences should  

consider the  allostatic load experienced by  a  community  (Chandra et al. 2019, Finucane  

et al. 2020), especially  if  impacted  by  multiple  disasters. Koliou  et al. (2018) emphasize,  

in the  context of  community  resilience  to natural hazards,  the  need  to  integrate physical,  
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263 social, and  economic  aspects  of community  resilience.  They  further emphasize  the  need  

to  include  interdependencies and  system rec overy  which are yet to  be  quantified.  One  of 

the  few  conceptual models that  integrates physical and  mental health  outcomes,  including  

considerations  for  allostatic loads,  is  the  Disaster-Pressure  State-Ecosystem  Services-

Response-Health  (DPSERH) model that describes the  interdependencies between  

ecosystem  services, individual and  community  health,  and  the  cumulative  stress impacts  

after disasters  (Sandifer et al. 2017).   

 

Like  human  health, socioeconomics lag  in depth  and  breadth  of quantitative  models as  

compared  to  those  available in ocean  environment and  biological ecosystems, in part due  

to  a  lack of  high-resolution,  longitudinal socioeconomic monitoring  and  data  collection. 

Challenges exist in matching  the  spatial and  temporal scales  of these  data  sets  with  those  

used  in biogeophysical  modeling.  For integrated  modeling  results to  be  useful,  

researchers should consider “decision-making  relevant scale (DMRS)”  (Yoskowitz  et al.  

2017, Verburg  et al. 2016) whether they  are for assessing  jurisdictional,  institutional,  

management,  and  local impacts (Cash  et al. 2006). Extensive  social and  economic  

datasets exist and  are  available for use  and  incorporation  into  models  (NASEM  2017, 

UNDRR 2017,  Sharifi 2016, Miles 2015, Frazier et al.  2014).  For example, existing  

datasets  include:  the  Census data  (census.gov) as well  as its  produced  American  

Community  Survey  (ACS) Public Use  Microdata  Sample  (PUMS) files,  Electronic  Medical  

Records  (https://digital.ahrq.gov/key-topics/electronic-medical-record-systems),  and  

marine  surveys  available through  the National Oceanographic and  Atmospheric 

Administration  (NOAA)  (fisheries.noaa.gov).  However, use  of  these  aggregated  datasets  
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286 to  fully  understand  social resilience  or vulnerability  at the  local, sub-county  or 

neighborhood  scale  is difficult  (Patel et  al. 2017).  Community  resilience  is inherently  local,  

with  high  degrees of  variability  across communities just  a  few  miles (or blocks) apart.  

Existing  available datasets do  not capture spatial or temporal variability  within counties or 

census tracts,  nor do  they  differentially  weigh  socioeconomic factors  by  local community  

prioritizations and  needs (Frazier 2012).  

 

Traditionally, efforts to  estimate  economic losses associated  with  oil  spills have  focused  

on assessing  lost  passive  use  values using  contingent  valuation  methods (Arrow  et al.  

1993, Grigalunas et al.  1986,  Mazzotta  et  al.  1994,  Hausman  et al.  1995,  Carson  et  al.  

2003,  Loureiro  et al.  2009,  Loureiro  and  Loomis 2013).  Alternatively, input-output  

analysis methods  can  be  implemented  using  current software tools and  databases  

(IMPLAN Group  LLC 2020, EconAlyze  LLC  2020, U.S. Bureau  of Economic Analysis  

2020).  

 

Studies  related  to  the economic  impacts  of the  DWH  oil  spill employed  a  wider  variety  of  

methodologies  (Petrolia  2014, Larkin  et al. 2013).   For  example, Sumaila  et al.  (2012)  

and  Carroll  et  al.  (2016) evaluated  the  negative  economic impacts of  DWH  on  commercial  

and  recreational fishing  and  marine  aquaculture through  the  seafood  value  chain using  

economic impact models for the  entire Gulf  Coast region. The  former study  estimated  

total economic losses for all  sectors to  be  $8.7  billion  and  the  latter study  estimated  that  

the  short-run  impacts on  the  Gulf  seafood  industry  from  the  DWH oil  spill  resulted  in  

reduced  income  ranging  from  $22  to  $310  million. Another study  used  spatial databases  
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of  annual reported  commercial catch  prior to  the  spill to  estimate  impacts of  the  oil  spill  

on  commercial fisheries in the  Gulf  Coast  region  resulting  in  an  estimated  minimum  loss  

in annual landed  value  of  $247  million  for U.S. Gulf  fisheries (McCrea-Stub  et al. 2011).  

Another example  employed  estimates from  the  Atlantis ecosystem  model to  evaluate  the  

short- to  medium-term  shifts in commercial and  recreational fishing  activity  due  to  fishery  

closures resulting  from  the  DWH  spill,  and  input-output analysis to  determine  the  

economic impacts of  these  changes (Court et al. 2019).  Another study  developed  a  multi-

modal predictive  framework integrating  (1) blowout simulations  (2) data  of fishing  fleets 

targeting  benthic and  pelagic ecosystems, and  (3) a  social vulnerability  index  derived  from  

U.S. Census  Bureau  data.  This framework was used  to  anticipate  the  relative  revenue  

loss between coastal communities in the  GoM (Berenshtein et al. 2019).  

 

In  terms of  tourism- and  recreation-related  losses, one  example estimates the  economic  

impacts of cancelled  recreational trips to Northwest Florida after the  DWH spill. A survey 

process was used  to  determine  average  lost visitor spending  per household,  which 

allowed  researchers to  calculate  estimated  total foregone  spending.  These  figures were 

then  used  to  model  broader regional economic losses  of  U.S.$  1.3  billion  for the  region  

due  to  canceled  visitor trips (Court et al. 2017). Others developed  a  series of  random  

utility  models for  site  choice among  saltwater anglers in the  Southeastern U.S. to  estimate  

recreational user losses resulting  from  the  DWH  oil  spill (Alvarez  et  al. 2014,  2015) with  

results suggesting that total monetary  loss from  recreational anglers was $585  million.  
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331 The  wide  range  of  estimated  impacts in the  examples listed  above  suggests a  high  degree  

of  uncertainty  and  the  effect of  varying  approaches. In  the  next phase  of  development  

socioeconomic modeling  efforts should  focus on  a  better understanding  of  the  social  

dynamics that drive  the  wide  variety  of  socioeconomic impacts  associated  with  oil  spills, 

the  development of best practices related  to  socioeconomics data  collection/use  and  

methodological approaches,  and  the  implementation  of  dynamic  regional economic  

modeling  frameworks to  fully  integrate  the  simulation  of the  broad  range  of community  

health  and  socioeconomic impacts,  given  their  reliance  upon  another  (Ritchie  et al. 2013,  

Whitehead et al. 2018).  

 

Given  the  limitations in  quantitative  modeling  in human  health  and  socioeconomics,  there  

are  major challenges to  understanding  human  health  and  social dynamics  in order to  

model them  in a  credible way, to  constructing  such  models, and  then  to  coupling  them  to  

existing  models of the  ocean  environment and  biological ecosystem  dynamics  

(Buckingham-Howes  et al. 2019, Nelson and  Grubesic 2020).  

 

3.3.  Converting the concepts  within the four domains of knowledge into a  CLD  

 

Expert-participant input was sought to  supplement the information  from  literature reviews  

and  Sea  Grant  outreach  efforts.   Input was facilitated  through  a  sequence  of webinars, 

virtual workshops, and  two  conference  sessions where experts were invited  to  participate  

in discussing modeling  needs and  linkages necessary  to answer long-term  societal level  

questions. (See  supplemental material  for details).   These  sessions supported  an  iterative  
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354 and  shared  development of  the  CLD (Figure 2). The  process began  with  researchers’  

presentations  of  their  work in a  series of  public webinars, one  for each  of  the  four domains.  

Each  webinar was followed  by  a  private  working  session, typically  with  10-20  participants, 

which used  the  presented  research as  a  starting  point for a  structured  questioning  

process designed  to  identify  the  causal structure implied  by  the  work as well  as linkages 

to  other domains.  Some  diagram  elements  were constructed  or marked  up  live, and  

others  were added  later  based  upon  participant  comments.  A  subsequent  series  of 

workshop  sessions reviewed  and  refined  the  diagrams and  added  elements from  a  more  

focused exploration of phenomena that cross  the  four domains.  

 

The  CLD  developed  from these  efforts reflect  the  four primary  domains of knowledge (1) 

the  ocean  environment (upper  center  quadrant); (2) biological-ecosystems (upper right  

quadrant), this quadrant also includes ecosystem  services; (3) socioeconomics (bottom  

right quadrant); and  (4)  human  health  (bottom  left quadrant) and  their  associated  linkages  

represented  by  colored-coded  arrows (Figure  2).  The  transport modeling  components  of 

the  ocean  environment  that rely  on  hydrodynamic, atmospheric, and  oil  behavior and  fate  

are represented by blue arrows. The components highlighted  with  gray  arrows represent  

the  response  linkages necessary  for establishing  short-term  operational models needed  

for response  and  the  political and  governance  drivers that mandate  the  establishment of 

these  short-term  models. The  interlinkages  associated  with  biological ecosystems as  

illustrated  by  different organism  biomasses and  habitats  are  represented  by  the  green  

arrows in the  upper right quadrant. Significant connections  between  the  upper half of the  

CLD and  the  lower half include  seafood, ecosystem  services, and  interlinkages between  
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377 oiled  shorelines  and  tourism. The  teal and  pink arrows  along  the  bottom  of the  diagram  

focus on  the interlinkages with socioeconomics and human health  components  including  

income  &  employment,  physical health,  mental health,  and  productivity. The  CLD  

illustrates the  influence  of  the  human  systems on  the  regulatory  framework and  the  

linkages to response efforts.   

 

3.4.  Observations from the  CLD  within each domain of knowledge  

 

Ocean  Environment: The  CLD  emphasizes that ocean  environment  models  (upper 

center, blue  circles and  arrows) are interlinked  with  response  planning  which is 

highlighted  within the upper left quadrant of the diagram  (gray  circles and  arrows, Figure  

2). This includes several short-term  loops that  represent responses to  the  spill  in terms of 

immediate  preparedness and  cleanup  efforts. The  CLD  also  emphasizes the  interlinkages  

of  the  ocean  environment model with  longer term  feedback loops that are part of  the  

integrated  socio-ecological model,  emphasizing  that effects  captured  in  operational  

models can  ultimately  influence  individual health  status,  productivity  and  community  

health. Through  perceptions of  oil  spills on  welfare and  risk, these  longer-term  impacts,  

influence the regulatory framework through which the  operational models are mandated.  

Consequently,  outputs  from  the  short-term  operational models not  only  influence  how  

society  responds rapidly  to  protect   resources that are sensitive  in the  short term,  but they  

also influence  the longer term  socioeconomics and human health  domains, which in turn  

feedback to  the  regulatory  framework through  public perceptions of oil  spill  effects, and 

hence  affect  operational responses. The  CLD  further  emphasizes that  perceptions are  
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400 also influenced  by  the  media  coverage  and  the  quality  of information  that  is disseminated. 

The  affected  perceptions  can  then  drive  the  regulatory  framework which impacts  

planning,  response  capacity, and  cleanup  efforts, which  then  impacts  the  amount of oil  

remaining in the ocean.  Thus the ocean  environment domain influences the  entire range  

of  decision-making  time scales,  from the short-term,  immediate response  on the order of 

hours to  days, to  the  longer term  decadal  scales  through  which  official policy  requires that  

ocean  environment models be  established  in the  interest  of  public  welfare  (Walker et al.  

2021).  

 

Biological  Ecosystems:  The  biological ecosystem  submodel  (Figure 2,  upper right  

quadrant,  green  circles and  arrows)  is highly  simplified  (as are several other causal  

loops). Oversimplifications include  the  lack of  trophic levels and  species  

interdependencies  thereby  omitting  an  explicit accounting  of  ecosystem  diversity.   In  its  

current simplified  form, the  CLD emphasizes the  interlinkages between  oil  and  impacts  

on  living  organisms  (e.g.,  Berenshtein et al.  2020b). It  also  emphasizes the  

interconnections of biological ecosystems with  socioeconomics through  perceived  safety  

of  seafood  for human  consumption  and  through  contact with  oil  in  beach  sediments  and  

marshes. Additionally,  socioeconomic  factors  impact biological ecosystems  through  

coastal development and  its impacts on  coastal habitats  and  the  impacts of  fisheries on  

foodwebs. The  CLD  also emphasizes that the contamination  of  biological ecosystems 

can  be  on-going  due  to  the  circulation  of  toxins in the  water column  and  their  release  from  

buried  material. These  are all  important  messages for stakeholders to  understand  the  

cascade  of effects triggered  after a  spill. It is important for injury  assessment  and  
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423 restoration  planning  (NOS  2020) to  measure  the  persistent impacts in addition  to  the  

immediate  acute  toxicity  and  mortality  effects. The  diagram further  emphasizes that the  

biological system  provides important  non-market ecosystem  services such  as  protection  

from  storm  surges and  access to  recreation. This is  an  important  part of  welfare  given  

that  people rely  on  these  non-market  services and  have  an  intrinsic interest  in the  

existence value of species and  landscapes.  

 

Socioeconomics:  The  socioeconomic  components (teal circles and  arrows)  tend  to  be  

clustered to the bottom right  quadrant  of Figure 2  with linkages with  ecosystem services,  

seafood  harvest, seafood  prices, seafood  industry  capacity, and income  &  employment. 

Additionally,  oiled  shorelines influence  beach  closures,  which have  impacts  on  tourism,  

income  &  employment. The  diagram  also emphasizes that  income  &  employment  rely 

indirectly  on  many  other components of the  socioeconomic  system, including  from  the  

human  health  domain,  for example  the  influence  of human  physical and  mental  health  on  

productivity. Additionally,  the  diagram  emphasizes the  intrinsic value  of  knowledge  and  

information  that can  be  produced  through  education. Education  level  can  affect  

perceptions of  safety,  consumer  confidence, people’s behavior  in response  to  a  spill,  and  

ultimately  can  impact community  welfare. The  CLD  emphasizes that the  socioeconomics  

components and  their  linkages to  human  health  and  other components of  the  integrated  

system can  be very complex and intricate.  

 

Human  Health: The  translation  of the  models and  concepts described  above  into  a  CLD  

(Figure 2) shows links between  the  oil  release  and  its transport/degradation  (blue  arrows), 
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446 and  ultimately  a  connection  to  human  health  through  the  exposure  of toxins to  human  

populations  (pink circles and  arrows). Exposures can occur through  cleanup  efforts and  

through  contaminated  seafood  and  beaches.  The  exposure to  human  populations can  

result in physical health  impacts,  which affects  society  through  productivity, and income  

&  employment. The  cycle is closed  through  the  links between  income  &  employment to  

healthcare  affordability. Mental health  is  an  important  contributor to  physical health.   

Mental health  can  manifest from  toxic exposures through  the  fear of  exposure and  loss  

of  use  of  treasured  places, loss of  recreational values, and  others (Parker et al. 2019,  

Ramchand  et al. 2019, Thomas et al. 2018). Mental health  is strongly influenced  by 

income  &  employment  which is linked  to  fishing  and  non-fishing  economies.  Mental 

health  is also influenced  by  community  health. Community  health  is dependent  upon  the  

social network of people, which help  maintain the  mental health  of  the  people  who  rely  on  

those  networks. The  analysis of human  health  systems  emphasizes  its strong  

interlinkages between  socioeconomics and physical and  mental health.  

 

 

4.  Analysis of the  Causal Loop: Key  Societal  Questions  

 

The  unifying  theme  of stakeholder questions  was, “damage  assessment in the  context of 

environment,  ecosystems,  and  human  health.”  In  terms  of damage  assessment, and  

using  DWH as an  example,  large  spills  send  an  immediate  shockwave  through  the  system  

described  by  the  CLD. The  physical spill of oil  occurred, for example,  in  the  deep  ocean,  

marked  by  the  oil  release  circle shown  in Figure 2. Within 24  hours the  information  of the  
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469 spill and  the fear of its consequences  spread across the  human domains. Then  a  slower 

set of  physical, chemical, and  biological effects and  information  waves  occurred,  and  

these  slower set  of effects  were more  thoroughly  discussed  amongst  experts and  

synthesized  in the  CLD. To  track this “damage” through  the  CLD, we  begin by  tracking  

toxins originating  from  oil  (herein, referred  to  as “toxins”)  and  their  impacts  on  

ecosystems, socioeconomics, and  human  health. Toxins are defined  as chemicals  

capable of  causing  lethal effects or sub-lethal effects including  acute  illnesses, chronic  

illnesses, and cancer.  

 

Impact  to the ocean  environment: A portion  of the  spilled oil  rose to the sea surface  and  

was transported  from  the spill site  by wind and surface currents  partly to settle into the  

sediments  and  partly into the water column  (Paris et al. 2012; Le Hénaff et al. 2012). 

However,  the  fastest oil to reach shore was the oil that rose to the sea surface and was 

carried by the surface  currents and wind  to shore (lower blue circle in Figure 3A).  At the  

surface,  oil  was removed  or converted  to new chemicals through  several  natural 

processes  including p hotooxidation, photodegradation, evaporation, and  biodegradation  

(DeGouw et al. 2010, Vaz et al. 202X). As a  result of  the DWH oil spill, Marine  Oil Snow  

Sedimentation and  Flocculent Accumulation (MOSSFA) was found to be an important 

removal pathway (Burd et al. 2020; Quigg et al. 2020, Bracco et al. 2020). Eventually, 

some of  the weathered oil slicks become  beached, after which  they  were  influenced  

further through  natural onshore degradation processes. Throughout the water column  

and seabed, natural microbial communities also played important roles in degrading  

different compounds in the  oil. Humans intervene  to  mitigate the  damages caused to the  
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492 ocean environment through addition of  dispersants and active clean  up offshore and  

onshore. Cleanup methods can lead  to  additional environmental and human health risks  

(Figure 3B), such  as through  the  use of  dispersants,  other cleanup chemicals, burning  

of surface oil, capture and subsequent disposal of  oiled water, sediments, and capture 

devices.  

 

Impact  to  the  biological  ecosystem: The toxic components of the  oil  spilled  in the  ocean  

environment influence  the  biological  ecosystems. The level of  impacts on  aquatic 

plants,  animal species, and microbial communities  are  dependent upon  the  frequency  

and  duration  of  exposure, and  the  concentration  of toxins that are  found  at the sea  

surface, water column, and bottom sediments. In the  model,  there is a  circular 

ecosystem that represents the  biomass of  many species (from  microbes to  fish and  

corals)  (Figure 3A). This ecosystem is naturally  regenerating and  degrading,  but  human  

actions  may also have  a negative influence on both regeneration and degradation. The  

steady-state  biomass  of the system  is dependent upon  habitat  quality  which dictates the  

carrying capacity and  is influenced  by oiling and coastal development.  The biomass of 

many  commercially important  species can also be  reduced  by  harvesting th rough  

fishing.  The influence  of  biological ecosystems on  socioeconomics and ultimately  

human  health is dependent upon  the impacts to  commercial and recreational  fisheries 

species  and  to  some  secondary and tertiary food web consumers such as corals, sea  

turtles and  marine mammals  that have intrinsic value to  humans, in addition to  many  

other taxa that play critical roles in ecosystem functions (e.g. algae and carbon  dioxide  

sequestration or mangroves and coastal protection).  
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Interlinkages between  ocean environment and biological ecosystems:  Although the  

ocean environment and biological ecosystems have  numerous significant feedback  

loops within their respective domains, processes within these two domains rely on  

feedback between  them. The distribution of  toxic substances  in the  ocean environment  

is influenced  by the  environmentally controlled  hydrodynamics,  and  especially ocean  

currents that play a major role on  transport  and  fate  processes. Biological ecosystems 

are highly influenced by the distribution of toxins and species sensitivity  within various  

trophic levels. The  key interlinkages between the two  domains,  the  biodegradation  of  oil  

by microbes  (counterclockwise green arrow from  microbes at the top of Figure 3A)  and  

the  uptake  of oil spill toxins by  marine organisms  (clockwise blue arrows in the center of  

Figure 3A), emphasize the  dependence of processes between  these two domains. 

Toxin concentrations are transferred  from the  ocean environment system  into  biological  

systems,  then circulate within the  ecosystems domain. Damage within the ecosystem  

domain can include  acute  and chronic impacts to  organisms  as well  as long-term  

impacts to th eir  populations via reduction in reproductive capacity and/or genetic 

damage. Microbial degradation  of oil, a key  biological process  (e.g.,  MOSSFA),  is seen  

as a  major feedback process from the  biological ecosystem towards the ocean  

environment. Although the  distribution of toxic substances within the  residual oil  

following a  spill can  be reasonably simulated  through  the  ocean environment system, it 

does rely heavily upon  the  microbial component of the ecosystems processes. These  

microbes can  not only remove oil  from the system, but also (by preferentially degrading  

different molecules) potentially alter its buoyancy and transport.   In summary,  processes  
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538 within the upper half  of the  CLD  (between  ocean environment and  biological 

ecosystems) are  inextricably linked,  requiring coupling of  the two systems to simulate  

major mechanisms that invoke damage (e.g.,  spread  of  toxins and loss of biomass  and  

diversity) through the system.  

 

Impact  to socioeconomics:  The spill impacted the seafood industry most immediately  

through the closure  of fishing zones, but also through  possible  reduction in the quality of  

the seafood and through reductions in  price  (as represented by ta n  arrows  in Figure 2). 

Recreational fisheries  are  another source of economic value in the  GoM, a sector that  

suffered damages for the same reasons as the  commercial seafood  industry. More 

generally, the tourism industry was damaged, due to  the impression  (real and  

perceived) of a damaged environment.  Income & employment  were  also affected  by  

loss of jobs and income associated with reduced  fishing activity and reductions in  

demand across the hospitality industries. This impacted the  productivity of the labor 

force that depends  on  health  status (Figure 3B, teal arrows). Human welfare (Figure 3B,  

bottom  teal  circle) is closely tied to  income  &  employment. Human welfare also  

increases by reinvesting a fraction  of  economic value in education (teal  arrows). But if  

there are excess healthcare costs due to spill effects and toxins then there is an added  

burden of illness and  fewer resources to spend on education. Health also affects 

productivity directly. So, there are economic and  health  feedbacks that represent the  

ways  in which economic impacts diminish the  accumulation of human welfare, which 

diminishes productivity and that propagates through the health system.   
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561 Impact  to health:  There are two components to the damages in the  health system. First, 

there are  direct physical toxic health effects,  where toxic exposures create  acute, short- 

and long-term  health effects.  The long-term  health  effects typically  appear a  few years  

or decades after the  exposure onset  or  may continue as a chronic condition  from the  

time  of exposure. Second, are the indirect mental effects, which can  be caused by a  

number of stressors  including  the  physical health effects  or worries about them, the  

socioeconomic damages, the environmental damages, and  a degrading trust in  a  

“system” that allows such a spill to happen.  Degradation of  mental health  might  

accelerate the degradation of physical health  and vice versa. This is probably the most 

uncertain piece of the  system, the  interconnectedness of  mental  and  physical health. In  

general, degradation of  human health  can  affect socioeconomics by changing  

productivity directly.   

 

Interlinkages between  socioeconomics and human health: Unlike the  ocean  

environment and  biological ecosystem domains, which have tight circular feedback 

loops within their respective domains, the  feedback loops for socioeconomics include  

human  health  and vice versa (Figure 3B) where complete  separation of  feedback loops 

between domains is not possible. A  major stressor on  mental health  is employment  

status and income  (which in turn are  also affected  by the toxins as described  above  

through indirect routes). When the  economy is below  a long-term  trend, psychological  

and  physical stress  levels increase  and impact health. For mental health and  

productivity feedbacks, there are more persistent effects on the economy based upon  

erosion  of long-term  community  resources in the community, social capital and support 
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networks, increased  costs for health care, and reduced investment in human capital. 

There are many economic and health  feedbacks that represent the  ways  in which an oil  

spill causes damage to the  accumulation  and  use  of the six forms of  capital affecting  

community  resilience. These  capitals  are 1) human  and cultural, 2) social, 3) political, 4) 

natural, 5) infrastructure, and  6) financial (NASEM 2019). Although this is an  over 

simplified  model and the linkage parameterizations are  far more complex than  

illustrated,  the  proposed structure  emphasizes  that socioeconomics and  human health  

are strongly dependent upon each  other. The  processes in each  of these  domains  

cannot easily  be separated as the  major feedback loops go back and  forth through  

these domains. As such, models developed  for the lower half of  the  CLD  need  to be  

tightly and intimately  coupled due to the close dependencies between human  health  

and socioeconomics.  

 

Interlinkages between  the  ocean environment and biological ecosystems  (top half) and  

the  socioeconomics and human health  domains (bottom half, Figure 2): Interlinkages 

between the  natural domains  (top  half)  and  the human-focused  domains (bottom half) 

generally  proceed in p rimarily  top down  pathways, in particular in  the shorter (monthly to  

yearly)  time  frames. These top  down  processes include  toxin impacts on seafood  

harvest,  and  on  physical health through  exposure during clean up, seafood  

consumption, or recreational uses. These impacts from the  oil spill help address 

stakeholder questions  focused on damage assessment, with damages operating  at the  

monthly to yearly time  scales. Thus,  on the time scale of months to  years, the system  

naturally  separates  where information  from  the  natural domain (top  half)  is transmitted  
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607 to the  human-focused  domain (bottom  half).  It is recognized, however,  that human  

activities do have  feedback  towards  the  natural systems  and that the dominance of  the  

top  down  flow of information is not absolute.   

 

At the  much longer time scales (on the  order of years to  decades) the  dominant flow of 

information is reversed with  outer loops that illustrate  feedback from the human systems 

back to the natural systems  (Figure 2). These  longer-term  feedbacks  are observed  

towards the  far right of  the  CLD  where coastal development influences  shoreline  

stability and coastal habitats. This feedback directly influences  biological ecosystems by  

impacting e cosystem  health  and diversity, habitat quality, and  carrying capacity. 

Similarly,  another very  significant outer loop is shown by the  teal  arrows  found towards  

the  bottom and left of the  CLD  (Figure 2). These loops represent feedback towards 

human systems that influence the regulatory framework (upper left),  which ultimately  

impacts  the probabilities and response  preparedness of future oil spills. These  feedback 

loops connect these  systems together and  span very  long-time  scales.  A  model that  

addresses these  outer loops of the  CLD  would be capable of  answering questions 

associated with the tradeoffs of prevention and preparedness for future  spills.  

 

5.  Mapping Existing Models  to  the  CLD: Identifying Gaps  in Model  Development  

to  Address  Stakeholder Needs  

 

To  identify  gaps in current modeling  efforts  and  methods for linking  models, existing  state-

of-the-art models were consolidated  from  expert input  during  virtual workshops. From  the  
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630 virtual workshops, the  expert input resulted  in a  list of  33  models  (Table  3)  that were  

developed  between  2010  and  2020  within each  of  the  domains of  knowledge. The  

capabilities of  these  existing  models were then  super-imposed  on  the  CLD  (Figure 4). 

The  results from  this superimposition  are described  for ocean  environment and  biological 

ecosystem  models (Section  5.1)  and  for  human  health  and  socioeconomic models  

(Section  5.2). Additional detailed  feedback on  modeling  needs from  experts is provided  

in the supplemental text.  

 

5.1.  Ocean environment and  biological ecosystem  domain  models  

 

The  super-imposition  of existing  models on  the  CLD  emphasized  the  larger expanse  and  

depth  of  quantitative  models currently  developed  for  the  ocean  environment and  

biological ecosystem  domains (Figure 4, highlighted  by  the  blue, green,  light purple  and  

gray  shapes). These  include  models  that are designed  to  be  discretized  in  space  and  time  

including a model that integrates atmospheric with oceanic processes (Chen et al. 2013,  

Curcic et al. 2016). The  level of  resolution  is dependent upon  the  phase  of  the  oil  spill, 

whether resulting  in acute  or chronic ecosystem  effects. For acute  effects, time  scales  

between  oceanographic and  ecosystem  models would be  more similar  given  that the  

effects  of  physical smothering  and  acute  toxicity  occur within a  short period.  Whereas for  

chronic ecosystem  impacts,  the  time  scales would be  extended  to  account for growth  and  

expanded  habitat of aquatic organisms which generally  exceed  the  time  and  spatial  

scales of hydrodynamic processes  that affect oil  distribution  and  degradation.  The  
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652 discrepancies between  spatial and  temporal scales expand  as the  focus of  assessment  

transition  from short-term to long-term  ecological impacts.    

 

These  discrepancies have  been  addressed  in some  existing  integrated  models  (light 

purple  shape). Examples of  fully  integrated  quantitative  models that cross-over these  two  

domains  of knowledge  include  Atlantis, the  bio-physical Connectivity  Modeling  System  

(CMS)  and  its oil  module (oil-CMA),  Spill Impact Model Application  Package  (SIMAP), 

and Consortium  for Simulation  of Oil-Microbial Interactions  in the  Ocean  (CSOMIO)  

(Table  3). The  CSOMIO  model offers an  example of  the  complexity  in combining  

simulations across these  two  domains of knowledge, by  integrating  the  simulations  of oil  

with  microbial degradation  and  sedimentation  using  different computational schemes.  

The  modeling  system  dynamically  couples components for  simulating  ocean  

hydrodynamics, oil  transport,  dispersion  and  weathering, oil-mineral aggregate  (OMA) 

formation,  flocculation  and  settling, and  the  lower trophic level marine  ecosystem.  It  is an  

adaptation  and  extension  of  the  Coupled  Ocean-Atmosphere-Wave-Sediment Transport  

(COAWST)  modeling  system  (Warner et  al. 2010). A  biogeochemical modeling  

component incorporating  a  microbial model (Genome-based  EmergeNt Ocean  Microbial  

Ecosystem  (GENOME); Coles et al. 2017) is implemented  in the  system  and  adapted  for  

the  presence  of hydrocarbons. The  sediment transport component of  COAWST 

(Community  Sediment  Transport  Modeling  System, CSTMS) is modified  to  include  

computationally  efficient flocculation  parameterizations for OMAs developed  from  

laboratory  experiments. The  ocean  modeling  component  of COAWST  (Regional Ocean  

Modeling  System, ROMS) is modified  to  simulate  three-dimensional oil  transport  and  
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675 compositional changes (weathering). These  modeling  components are linked  together  

using  a  two-way  Lagrangian-Eulerian  mapping  technique,  enabling  interaction  between  

all  the  modeling  components  for tracking  of hydrocarbons from  a  source blowout to  

deposition  in  sediment, microbial degradation, and  evaporation  while  being  transported  

through the  ocean.  

 

5.2.  Socioeconomic and  health domain  models  

 

Full  integration  of  models across the  socioeconomics and  health  domains  has not yet  

occurred  for oil  spill models, although  some  progress has been  made  in  the  integration  of 

ocean  environment,  ecosystems, and  subsets  of  the  socioeconomics  realm. The  oil-CMS  

model simulates toxic oil  transport,  fate  and  dispersion, impacts to  the  subsea  and  to  

fisheries  (Paris et al. 2012, Berenshtein et al. 2019, Perlin et al. 2020),  and has expanded  

into  the  socioeconomics knowledge  domain  through  its use  to  evaluate  the  economic  

impacts  of  fishery  closures  (Berenshtein  et  al. 2020a,b). SIMAP,  a  proprietary  model  

(French  et al. 1996), crosses over the  ocean  environment domain,  the  ecosystem  domain,  

and  because  of its use  in the  National Resource  Damage  Assessment (NRDA) process,  

also includes estimates of  ecosystem  valuation  by  providing  input to  another proprietary  

model, the  Offshore Environmental Cost Model (OECM, BOEM 2016).   

 

Although  there have  been  extensions  of quantitative  and  discretized  models into  portions  

of  the  socioeconomic  domain,  there are no  models that are fully quantitative  and  

discretized  that address the  entirety  of  socioeconomics and  human  health. As a  result,  
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698 two  new  categories of  models are  defined  in Figure 4  that  differ in level of development  

compared  to  models that simulate  the  ocean  environment and  ecosystems. These  

categories include  “quantitative  modeling  frameworks”  and  “conceptual models.”  

“Quantitative  modeling  frameworks” include  equations that quantitatively describe  

relationships between  variables  but  are yet to  be  integrated  in time  and  space  with  the  

more well  developed  spatially  and  temporally discretized  oceanographic and  ecosystem  

models  (e.g.,  pink,  tan, and  teal shapes  in Figure 4). “Conceptual models”  (represented  

by  the  dotted  gray  lines  in Figure 4) include  flow  charts and  the  development of  indices  

to  quantify  human  health  and  socioeconomic vulnerabilities.  The  limitation  to  integration  

is disaggregation. But  in the  case  of socioeconomics and  human  health, the  relevant  

types  of  disaggregation  (other than  space  and  time) are  needed. For example,  a fisheries  

valuation  model  would require  information  about  impacts  of  oil  on  fish  species and  on  

different sectors  of the  fishing  economy. Impacts will be  different  for the  specific species  

or groups of species of fish  that  is/are  the  focus of commercial  and  recreational  fishing. 

Therefore,  information  should be  disaggregated  to  the  fish species level by fishing  sector  

for input to  socioeconomic models. Such  disaggregation  is  rare for longer-term  ecosystem  

models and  so  there  is generally  a  mismatch  (or impedance) between  what  ecosystem  

models  provide  and  the  information  needed  to  quantify  economic impacts. For physical  

human  health,  various  chemicals can  cause  diseases in  humans  and  so  integration  with  

physical human  health  would require  that ocean  environment models separate  chemical  

data. Oil (crude  oil  or its products such  as fuel oil) is  a  complex  mixture of  thousands of 

individual chemicals.  Modeling  each  chemical would be  extremely  difficult.   For this  

reason,  most oil  transport  models simulate  chemistry  by  splitting  the  oil  into  pseudo-
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721 components  (Beegle-Krause  et  al.  2001,  Paris et  al.  2012,  NOAA  2014, Dagestad  et  al.  

2018). Some  go  farther to  simulate  selected  PAHs (Berenshtein  et al.  2020a, French-

McCay  et al. 2019, Vaz  et al. 2020). Very  few, if  any, simulate  multiple  individual chemical  

concentrations within water, air, and  sediments which is a  starting  point  for human  health  

and  ecosystem  risk assessments. Similarly, here in  terms of disaggregation  of  chemical  

concentrations there  is a  disconnect  between  ocean  environment models and  physical  

human  health  modeling  needs  that  require  chemical species disaggregation. And  this  

discussion  only  considers physical health  consequences  of some  oil  components  for  

humans.   

 

The super-imposition  of  existing  models emphasizes that no  single quantitative  model  

incorporates  the  entire  range  of  model components  and  processes  needed  to  address  

societal impacts  of  oil  spills, and  to  our knowledge, there have  been  no  advancements  

made  to  quantitatively couple  existing  models across all  four domains, although  very 

broad  conceptual  non-quantitative  models such  as  DPSERH  (section  3.2) are available. 

Within socioeconomics and  human  health,  the  development of  quantitative  physical  

health  and  ecosystem  valuation  will require  that the  ocean  environment and  ecosystem  

models overcome impedance  by  providing  the  outputs needed  for quantification  in  the  

lower half of the  CLD. In  the  area  of mental  health  and  the  psycho-social effects  of  oil  

spills, although  conceptual models for mental health  frameworks exist (Figure 4, lower 

portion  of  figure), these  are generally  not quantitatively  modeled  at  this time. Within  the  

middle of  the CLD  where consumer education, knowledge  and  consumer confidence  

intersect, there are no  overlapping  shapes. The  missing  components of  a  model are the  
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744 non-monetary  variables in the  community  such  as  how  individuals and  populations  

respond  to  changes in  quality  of  life, what are the  quality  of  life  implications of health  

status,  education,  and  equity, and  others. Socioeconomics models need  to  integrate  

these  variables in addition  to  traditional monetary  metrics. Similarly,  perceptions  of 

welfare, community  and  risk and  their  influence  on  regulatory  frameworks and  their  

adoption,  as shown  on  the  left  side  of  the  CLD  (Figure 2), are completely  lacking  from  

existing  modeling  frameworks.   

 

6.  Roadmap for Future  Applications  

 

A  CLD  is by  design  qualitative. The  next step  of  a  System  Dynamics  project  would be  to  

convert the  CLD  to  a  formal simulation  model by  identifying  stocks and  flows  (Sterman  

2002), quantifying  linear and  nonlinear relationships, and  adding  time  series data  for 

comparison  and  representation  of features outside  the  model scope.  Each  variable could  

then  evolve  according  to  an  underlying  equation  that describes  the  rate  of  increase  or  

decrease  of  that variable (as  a  consequence  of all  the  linkages between  domains  and  

impacts  in  the  diagram). With  such  a  general high-level  understanding  of  how  the  system  

interacts,  key  dynamics can  then  be  represented  and  integrated  into  a  fully  coupled  

model. It  is recognized  that identifying  the  underlying  equations will be  a  challenge  and  

will require considerable  future research to validate.  

 

One  limitation  of  the  CLD  in its current form  is the  lack of  spatial discretization  and  

disaggregation  of  different population  groups and  different economic sectors. Various  
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767 spatial domains can  however  be  represented  in suitably  elaborated  and  disaggregated  

sub-models within the  same  overall  conceptual framework. A  useful  next step  would be  

to  attempt the  construction  of  more complex  sub-models,  especially  for the  

socioeconomic and  human  health  domains,  where quantitative  models  are  less well-

developed. In  addition, it is possible  that the  existing  complex  models of  the  ocean  

environment and  biological ecosystem  dynamics could  usefully  be  emulated  by  less  

complex  systems dynamics models, or even  included  directly  by  careful definition  and  

representation of the crucial interconnections.   

 

Rather than  building  a  System  Dynamics  model, the  CLD can  be  also used  for  defining  

and  developing  connections between  models (Zolfagharian  et al. 2018). Pathways to  

integrating  models can  include  a  portfolio  approach  (organize  a  family  of  independent  

models  without attempting  to  link them  mathematically), loosely  coupled  models (where 

the  output  from  one  model is used  as the  input to  the  next), fully  coupled  models  (combine 

multiple  large-scale models where information  is transferred  at each  time  step), and  

metamodels (a large  holistic and  fully-integrated  model that simulates details within all  

systems). Given  the  large  differences in time  and  spatial scales  between  the  ocean  

environment/ecosystems and  socioeconomics/human health  domains, directly  linking  all  

modeling  efforts into  a  large  metamodel model does not appear to  be  practical  at this time  

for addressing  stakeholder questions. One  can  envision  taking  the  portfolio  of  already  

developed  models and  augmenting  and  coupling  (federating) them. This will lead  to  larger 

models which,  at some  point,  are  likely  to  become  intractably  difficult and  expensive  to  

run  as  the  socioeconomic  domain  is integrated. The  strategy  to  federate  models might  be  
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790 possible  for the  ocean  environment and  ecosystem  models. For the  socioeconomic  and  

human  health  domains, given  the  interlinkages between  these  domains,  it would likely  be  

best to  further integrate  and elaborate  the  models within these  domains.   

 

Given  the  observations from  the  CLD, the  most practicable  path  forward appears to  be  

the  development of  a highly  integrated  dynamic  model  that represents  the  socioeconomic  

and  human  health  spaces, with  rich  feedback processes between  them.  This highly  

integrated  model would be  capable  of receiving  inputs from  models that simulate  the  

ocean  environment and  biological ecosystem  domains. This approach,  however, does  

not capture  the  even  less explored  decadal scale processes whereby  the  human  

dimensions (e.g.,  change  in policies) impact the  frequency  and  magnitude  of  oil  spills,  the  

ability  to  respond  to  these  spills,  and  ultimately  impact  the  natural ocean  environment  and  

biological ecosystems.  Future  developments should  also integrate  these  larger term  

processes that  feedback from  the  human  and  socioeconomics domains back towards 

governance aspects that provide some controls on the  potential for a spill.  

 

For the  health  and  socioeconomics  domains,  a  crucial requirement is to  define  suitable  

disaggregation  of  the  whole population  and  economy, both  spatially  and  sectorally, and  

to  obtain the  data  needed  to  characterize  their  interactions and  evolution. While  the  level 

and  types of detail  needed  for these  sub-models  will be  different  than  that  needed  for the  

natural  systems  models of the  ocean  environment and  ecosystems,  there  is a  paucity  of 

data  available  to  substantiate  the  human  domains.  Though  there are  gaps,  in  the  

biophysical realm  broad-based  monitoring  efforts have  been  organized  into  formal 
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813 systems from  the  global scale, for instance, NASA’s Earth  Observing  System  or the  

Global Ocean  Observing  System  (GOOS), to  more  regional  efforts like  the  GoM  Coastal 

Ocean  Observing  System  (GCOOS) and  Fisheries Information  Network (FIN). There is  

no  equivalent monitoring  or observing  system  of  a  robust suite  of  socioeconomic variables 

that can  help  us assess the  value  of non-market  resources or cultural attributes  for  

example. Data  is gathered  for various uses (e.g.,  recreational and  commercial fishing,  

employment  in shipping) but there  is no  concerted  effort  to  aggregate  existing  data,  

identify  and  fill longitudinal data  collection  gaps,  and  make  it available  in a  value-added  

process. An  improved  human  health  observing  system  has been  proposed  that consists  

of  a  six  layered  approach  that includes an  already  existing  three-layered  set of  large-scale  

surveys and  studies with  the  addition  of  three  new  nested, longitudinal cohort studies  

(Sandifer et  al. 2020a). The  conceptual framework under  this  proposal for an  integrated  

socioecological model  for long-term  impacts  of  oil  spills that includes improved  human  

health  observing  systems would provide  data  to  calibrate  quantitative  models that  

integrate physical health, mental health, and socioeconomics.  

 

For the  immediate  future, for expediency  purposes, future directions  could involve  adding  

socioeconomics and  human  health  functionalities to  the  operational models for use  during  

an  active  spill  (Brandeau  et al. 2009), for prospective  impact assessment (Nelson  and  

Grubesic 2017, Grubesic et al.  2019), or for retrospective  damage  assessment. During  

an  active  oil  spill,  operational models can  potentially  provide  considerable insights  

regarding  the  transport  of  the  oil  and  possible  impacts of  mitigation  measures.  Coupling  

this information  with  human  dimensions would allow  for more  informed  and  educated  
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836 decisions  that can  prevent irreversible effects  on  an  ecosystem. Knowledge  of conditions  

that  may  cause  irreversible effects  could  be  used  to  constrain  short-term  mitigation  

decisions and help ensure desirable long-term outcomes.    

 

Finally, we  must recognize  that the  deterministic nature  of  any  simple model limits its  

ability  to  represent and  propagate  errors and  uncertainty. Uncertainty  propagation  can,  in  

principle,  be  addressed  by  putting  probability  distributions on  each  input parameter of  the  

future  integrated  socioecological model,  and  then  running  the  model in a  Monte  Carlo  

formulation  to  evaluate  how  error and  uncertainty  propagates. In  practice,  deciding  which  

variables and  rates to  randomize  is a  non-trivial problem, and  the  cost of running  many  

instances of  the  model will  limit the  level of  detail  that can  be  incorporated  in the  individual 

sub-models.  Uncertainty  issues for operational oil  spill models is discussed  in Barker et  

al. (2020)  and  can  be  used  to  help guide  approaches for assessing  uncertainties in longer  

scale models capable of answering societal level questions.  

 

 

7.  Summary  and  Conclusions  

 

The  original four  box  diagram,  used  to  initiate  the  conceptual modeling  framework (Figure 

1),  was found  to  effectively  serve  the  System  Dynamics  approach  well  as the  initial  

organizing  principle  for  oil  spills. The  CLD  developed  emphasized  the  components and  

interconnections of a conceptual  model that can  be  used  to  evaluate  the  many  questions  

related to  damage  assessments. The  analysis of  the  CLD  emphasized,  at time  scales of 
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859 months  to  years, that  the  system  naturally  separates  into  two  tiers:  ocean  environment  

and  biological ecosystems versus socioeconomics and  human  health. The  top  tier  

requires spatial  detail  of  physical and  biological systems. The  bottom  tier  is  about  human  

populations, and  therefore needs to  be  disaggregated  by  individuals (or socioeconomic  

groups), economic sectors,  and  health  aspects. These  tiers therefore  work in  

fundamentally  different  spaces. This difference  in  variable measurements  may  serve  as  

a  simplifying  approach  where the  top  tier processes (ocean  environment and  biological  

ecosystems), which are already  interlinked  through  existing  models serve  as  inputs to  the  

lower tier processes (socioeconomics and  health). Efforts are needed  to   develop  a  more  

fully  integrated  dynamic model  that simulates  the  linkages of  the  lower tier processes of  

socioeconomics and  human health and  one  that  also  accepts,  as  input,  the  outputs from  

the  upper tier processes of ocean environment and  biological ecosystems.  

 

The  CLD  also demonstrated  that at the  much longer decadal time scales, governance or  

regulatory  processes  influence  the  probabilities and  possible  scenarios associated  with  

future spills. These  regulatory  processes,  whether associated  with  shoreline  development  

or oil  drilling  permitting  and  procedures,  represent  the  primary  feedback loops from  

socioeconomics and  human  health  domains back towards ocean  environment and  

biological ecosystems. In  order to  incorporate  the  entire system  inclusive  of  regulatory  

processes,  these  longer scale feedback processes should be  captured  through  a  

secondary  set of  models (or possibly  boundary  conditions) that consider changing  laws  

and  regulations to  mitigate  damages from  oil  spills  and  which consider levels of  oil  spill  

preparation,  response,  and  recovery  planning  capacity. The  consideration  of  boundary 

39  
 
 

860 

861 

862 

863 

864 

865 

866 

867 

868 

869 

870 

871 

872 

873 

874 

875 

876 

877 

878 

879 

880 

881 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

882 conditions for processes that function  at  decadal time  scales  would depend  upon  whether  

governance  and  preparation  processes remain constant during  the  target periods for 

assessing impacts to  socioeconomics and  human health.   

 

Improved  long-term  outcomes  would  demonstrate  the  value  of integrating  models  into  the  

decision-making  process. Even  without quantitation, the  CLD can  serve  as a  platform  for 

managers to  have  a  “big  picture” view  on  oil  spill effects,  and  consider indirect effects,  

which might  not have  been  considered  otherwise.  For example, the  CLD emphasizes that  

short-term  oil-based  toxin inputs to  the  system  can  have  long  lasting  repercussions on  

the  community  as shown  by  the  linkages. Ideally, a  fully  developed  System  Dynamics  

model should be  available to  evaluate  possible  long-term  outcomes from  shorter-term  

decisions for immediate  mitigation. Ultimately  there  would be  utility  to  linking  short-term  

operational models (Barker et al. 2020) to  a  System  Dynamics  model designed  to  

evaluate  long-term  societal  outcomes inclusive  of socioeconomics and  health, the  

beginnings of  which are described  herein.  Practical application  of  the  findings and  insights  

of  this model is critical as its application  supports multiple aspects of human  communities.   

 

This exercise  would not have  been  possible without the  input  from  experts and  

stakeholders  (See  supplemental text for list). The  work emphasized  the  importance  of 

building  a  professional  network (Rouwette  et al. 2002),  that  can  be  used  to  reconfirm  key  

stakeholder questions  at the  time  of  a  disaster  (Walker et al. 2015, Bostrom  et al. 2015) 

and  refine  linkages since  the  CLD  is not  necessarily  static. It will change  over time  as  

knowledge  is gained,  and  as society  structure  and  values change. These  changes can  
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905 only  be  implemented  in  any  model through  continuous  input and  updates developed  from  

those with expertise and interests in the impact of  oil spills  and other disasters.  Although  

emerging  from DWH  and  its  focus in the  GoM,  results from  this synthesis study  are 

expected  to  be  valuable for other marine environments that  are subject to oil  exploration  

and  to  other potential contamination  events  (e.g.,  harmful algal blooms, floods, chemical  

plant  releases  along  the  coast).  The  known  interlinkages and  the  knowledge  gaps  

identified  through  this  effort  have  applicability  to  the  development of fully  integrated  

models capable of  assessing  holistic societal  impacts that incorporate  knowledge  from  

ocean environment, biological ecosystems, socioeconomics and human health.  
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1513 Table 1:  Target audiences engaged by GoM Sea  Grant Oil Spill Science  Outreach  Team  

Elected officials Port and harbor employees 

Emergency responders or managers Tribal communities 

Environmental non-profit staff members Health professionals 

Fishers (commercial, for-hire, recreational) Tourism staff 

Natural resource managers University and college researchers 

Oil industry Sea Grant Extension and GoMRI 
outreach specialists 
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1517 Table 2: List of Selected Stakeholder Questions from within Each Knowledge Domain and Consolidated by 
1518 the GoM Sea Grant Oil Spill Science Outreach Team 

Ocean Environment 
1. Where did the oil go? What are the biggest deposits today? 
2. How long did the oil take to reach the deposits? 
3. Which beaches are affected? 
4. How much is buried on the sea floor? 
5. Could a big storm bring the oil on the sea floor up into the water column and start the process 

all over? 
6. Did any oil make it into the organisms living in the water column or on the seafloor? 
7. What happens to the oil over time when dispersants are applied? 
8. What are the natural organisms that decompose hydrocarbons (crude oil) and how can we 

increase this process? 
9. Was it possible to track the oil with numerical models? If not, can we do it better now? 

Biological Ecosystems 
1.Within ecosystems there were 48 questions that related to the following topics 

a. Food webs e. Inshore/deep-sea habitats 
b. Benthic/pelagic/infaunal f. Sub-lethal effects 

organisms g. Dispersants 
c. Mammals h. Fisheries and stock assessment 
d. Juvenile fishes 

Examples of specific questions include 
A. We need to solve the [tradeoff] of short-term effects of oil vs. long recovery [to better 

understand] actions like dispersant use that may cause short-term negative effects but 
are beneficial in the long term. 

B. How does food web and ecosystem connectivity affect injury assessment? 

Socioeconomics 
1. How can vulnerable communities with subsistence economy become resilient to incessant oil 

spillages? 
2. Very interested in impacts to the economy and infrastructure. 
3. What are the long-term expert consensus prognosis and predictions for any continued 

significant health risk or resource effects or community structure changes in the affected 
areas? 

4. What was done most effectively to ensure that the economic concerns of those impacted were 
met in a sustainable fashion? 

5. Short and long-term economic impacts of the BP oil spill on GoM fisheries. 
6. Socioeconomic impacts of spill (true costs of closures, lost tourism and fishing income, etc.). 
7. Economic impact on areas due to habitat destruction. 
8. Impact on coastal communities. 

Human Health 
1. How are humans affected by eating contaminated fish? 
2. Effects of airborne dispersants on community health. 
3. Inhalation hazards from aerosol oil spray or burning of oil. 
4. What are the potential health risks for the people responding for clean ups? 
5. Health impacts on anglers, people working during/in the area of the spill. 
6. What health impacts did the spill have on residents? 
7. Dispersant effects on human/animal health. 
8. Impacts of stress to mental health. 
9. Are our citizens safe and healthy living in a region where "big oil" exists? 
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1519 Table 3: List of Representative Models and Summary of Their Capabilities for Simulating Ocean 
1520 Environment, Ecosystem, Socioeconomic, and Human Health Impacts of an Oil Spill. For a more complete 
1521 list please see Ainsworth et al. 202X. 

Model Name Description Reference 

Ocean Environment - Operational Ocean Current Models Relevant to GoM 

HYCOM HYbrid Coordinate Ocean Model. Oceanic hydrodynamic and 
general circulation model. Global ocean circulation model. 

Chassignet et al. 
(2007, 2009) 

HYCOM 
(GoM 1/25) 

HYbrid Coordinate Ocean Model. Oceanic hydrodynamic and 
general circulation model. GoM regional model at 1/250 

resolution (Naval Research Lab – SSC) 

Prasad and Hogan 
(2007) 

HYCOM 
(GoM 1/50) 

HYbrid Coordinate Ocean Model. Oceanic hydrodynamic and 
general circulation model. GoM regional model at 1/500 

resolution (Univ. of Miami) 

Le Hénaff and 
Kourafalou (2016) 

HYCOM 
(FKEYS) 

HYbrid Coordinate Ocean Model. Oceanic hydrodynamic and 
general circulation model. Southeastern Gulfof Mexico and 
Straits of Florida regional model at 1/1000 resolution (Univ. of 
Miami) 

Kourafalou and Kang 
(2012) 

TBCOM Tampa Bay Coastal Ocean Model (TBCOM) Nowcast/Forecast 
System 

Chen et al. (2018, 
2019) 

WFCOM West Florida Coastal Ocean Model (WFCOM) 
Nowcast/Forecast System 

Zheng and Weisberg 
(2012), Weisberg et al. 
(2014,2016) 

Ocean Environment - Integrated Models 

CMS Connectivity Modeling System. Probabilistic Lagrangian model 
platform that tracks the movement of biotic and abiotic particles. 

Paris et al. (2013), 
Faillettaz et al. (202X) 

oil-CMS CMS Module that tracks the oil concentration and fate from the 
deep-sea blowout to the sea surface with an ensemble of 
boundary conditions for gas to oil ration (GOR), dispersant to oil 
ratio (DOR), and initial droplet size distribution (iDSD). Couples 
NOGAPS winds and NAVGEM irradiance for photooxidation. 

Paris et al. (2012), 
Perlin et al. (2020), 
Vaz et al. (2020) 

oil-CMS-
TAMOC 

Couples oil-CMS with the Texas A&M Oil Spill Calculator 
(TAMOC) that provides equation of state of oil and gas in the 
nearfield plume and their time-variable droplet and bubble size 
distributions. 

Vaz et al. (2019) 

COAWST-
ROMS 

Coupled Ocean-Atmosphere-Wave-Sediment Transport -
Regional Ocean Modeling Systems. Oceanic hydrodynamic and 
general circulation model. 

Warner et al. (2010) 

DwH Oil Spill 
Trajectory 
Model 

Lagrangian trajectory modeling system in rapid response to the 
Deepwater Horizon oil spill that combines satellite-inferred oil 
slicks with an ensemble of six different ocean circulation models. 

Liu et al. (2011a,b,c), 
Weisberg et al. (2011) 

GNOME General NOAA Operational Modeling Environment. Oil transport 
model with fate capabilities that include dissolution and 
evaporation. 

Beegle-Krause (2001), 
NOAA (2014) 

MITgcm-spoil MITgcm ocean and atmospheric model with a multiphase 
package called 'spoil'. Simulates a nearfield multiphase plume. 

Fabregat et al. (2016, 
2017), Deremble (2016) 

UWIN-CM Unified Wave Interface – Coupled Model, coupled atmosphere-
wave-ocean-land model for prediction of transport, weathering, 
mixing, and coastal impacts. 

Chen et al. (2013), 
Chen and Curcic (2016) 
Curcic et al. 2016 
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1523 Table 3 (continued) 

Model Name Description Reference 

Ocean Environment - Integrated Models (continued) 

NRDAM/CME Natural Resource Damage Assessment Model for Coastal and 
Marine Environments. Oil transport and fate, biological effects, 
and economic damages model for use in simplified natural 
resource damage assessments. 

Reed et al. (1989), 
French et al. (1996) 

OSCAR Oil Spill Contingency And Response. Oil transport and fate 
model 

Reed et al. (2000) 

SIMAP Spill Impact Model Application Package. Proprietary model that 
evaluates oil transport and fate; environmental resource 
exposures; toxic effects; fish, invertebrate and wildlife 
mortalities; lower trophic level production losses, food web 
losses; and population losses of wildlife species. 
Compensatory restoration scaling based on production gains 
and resource equivalency analysis (REA) 

French-McCay et al. 
(2019) 

Biological Ecosystems 

Atlantis Modular modeling framework that simulates food webs and 
capable of evaluating climate scenarios, human impacts on the 
environment including fisheries, changes in land use, non-point 
source pollution, and the effect of wind and wave farms. Applied 
to GoM fisheries. 

Fulton et al. (2005), 
Ainsworth et al. (2015, 
2018) 

oil-CMS-
Atlantis 

Couples CMS oil Module with Atlantis model to simulate 
biomass loss and recovery. 

Ainsworth et al. (2018), 
Berenshtein et al. 
(2020a) 

CSOMIO Consortium for Simulation of Oil-Microbial Interactions in the 
Ocean. Nearfield and far-field oil transport and fate, including 
sediment transport and an emphasis on microbial processes 
including marine snow and enzymatic processes and evolution 
of microbial populations through a genomics functional group 
model. Couples COAWST-ROMS and GENOME. 

Dukhovskoy et al. 
(2020) 

DEEPEND Provides new data for tracking water column organismal 
abundance and biomass over time (2010-2029) and quanti-
fying vertical connections in ecosystem processes. 

Hopkins et al. (1996), 
Sutton et al. (2017) 

EwE Ecopath with Ecosim models the marine food-web comprising 
major clades of marine organisms using a mass balance 
approach. The model simulates marine fishes, birds, reptiles, 
invertebrates, and mammals allowing for a better 
understanding of the complex dynamics occurring in the marine 
ecosystem. Can be used to evaluate policies. 

Christensen et al. 
(1992, 2004) 

GENOME Genome-based EmergeNt Ocean Microbial Ecosystem Model. 
Simulates the microbial genes responsible for different 
metabolic functions, including hydrocarbon degradation. 

Coles et al. (2017) 

GoMex- Vertically resolved food web model for the oceanic north central Steele and Ruzicka 
ECOTRAN section of the GoM. Expands upon the Ecopath model by 

simulating vertical migration of organisms, detritus sinking, and 
physical mixing of nutrients. 

(2011) 
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1525 Table 3 (continued) 

Model Name Description Reference 

Socioeconomics 

Atlantis and Used output from Atlantis model to evaluate temporal Court et al. (2019) 
Input-output distribution of changes in commercial species catch by species 
Analysis and recreational fishing efforts and used this to estimate 
(IMPLAN) economic impacts for the northern GoM region. 

oil-CMS- oil-CMS computes fisheries closure based on toxic oil Berenshtein et al. 
Fisheries concentration and couples a fisheries socioeconomics module 

that estimated vulnerability of impacted fishing areas and 
counties. 

(2019, 2020b) 

Gulf GoM Space-Time Regional Economic Analysis Model. Court, C.D., personal 
STREAM Proposed model that will forecast economic impacts associated 

with trends and variability in living and coastal marine 
resources. 

communication 

OECM Offshore Environmental Cost Model. Calculates the 
environmental and social costs resulting from the impact of 
activities associated with Outer Continental Shelf oil production. 
Evaluates six environmental and social cost categories: air 
quality, ecological, recreation, property values, subsistence 
harvests, and commercial fisheries. Used by the Bureau Ocean 
Energy Management to estimate the impacts from routine 
activities. 

BOEM (2016) 

Travel cost 
method and 
Input-output 
Analysis 
(IMPLAN) 

Economic impacts of cancelled recreational trips to NW Florida 
after the DWH oil spill. 

Court et al. (2017) 

Human Health 

Bayesian A Bayesian hierarchical linear model was developed to Groth et al. (2017) 
model estimate exposures to specific volatile oil components 

(benzene, toluene, ethylbenzene, xylene, and hexane) to oil 
drill workers charged with drilling a relief well. 

BEACHES Beach Exposure and Child Health Study. Risk assessment 
platform that uses Monte Carlo simulations to evaluate 
chemical concentration distributions and child activities to 
estimate probabilities of physical health outcomes. 

Black et al. (2016) 

Resilience Analysis of multiple observational disaster cohorts, Abramson et al. (2015) 
Activation supplemented with hierarchical secondary data on hazards, 
Conceptual risks, infrastructure, vulnerability, and resiliency. Used to 
Framework develop Z scores as measures of resiliency. 

DPSERH Disaster-Pressure State-Ecosystem Services-Response-
Health Model. Conceptual non-quantitative model that 
evaluates the link between disasters and human physical and 
mental health, including allostatic load. 

Sandifer et al. (2017) 
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1532 

1533 

1534 Figure 1. Integrated  model structure  of  the  four knowledge domains that were used  to  first address 

key stakeholder and societal questions pertaining to oil spill science, and secondly serve as a  

basis to develop  the Causal Loop Diagram (see Figure 2).  
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1541 

1542 

1543 

1544 Figure 2. Causal Loop  Diagram  (CLD)  for Conceptual System  Structure for Evaluating  Oil Spill  

Impacts. This diagram is intended  to  be  of  general use  describing  the  interlinkages of  oil  spills, 

although DWH was the primary example used in developing this diagram.   
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1550 

1551 

1552 Figure 3:   Evaluation  of  primary  feedback loops within and between domains identified  from  expert  group  

assessments.  Upper  panel,  3A,  emphasizes the  main causal  consequences of  oil  spill  damage to the  ocean  

environment  (blue)  and biological  ecosystems (green).  Lower panel,  3B,  emphasizes causal  consequences  

of  oil  spill  damage  to  the  socioeconomics  and human  health systems  (teal  and  pink)  with ultimate  impacts to  

community  welfare. Background  shows portion  of  the  full  causal  loop diagram.   
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1562 

1563 Figure 4. The  Causal Loop  Diagram  with  the  superimposition  of existing  models. Blue  and  green  

shapes correspond  to  open  source  quantitative  models that are currently  available. Light purple  

shape  corresponds  to  the  few  models  that integrate the  ocean environment, biological ecosystems  

and  some  components of  the  socio-economics domains. The  pink,  tan  and  teal  shapes  show  the  

realm  of  existing  quantitative  model frameworks. These  quantitative  frameworks are yet to  be  fully  

developed  for integration  with  the  more developed  oceanographic and  ecosystem  models. Dotted  

shapes correspond to  existing  conceptual models that are non-quantitative.  
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